metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[silver(Ι)-*μ*-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] trifluoromethanesulfonate]

Grant A. Broker and Edward R. T. Tiekink*

Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA Correspondence e-mail: edward.tiekink@utsa.edu

Received 25 August 2007; accepted 26 August 2007

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.004 Å; R factor = 0.025; wR factor = 0.068; data-to-parameter ratio = 11.9.

In the polymeric title compound, $\{[Ag(C_{12}H_{10}N_4)](CF_3SO_3)\}_n$, the Ag atom lies within an almost linear N_2 geometry and the topology of the polymer is linear. Weak $Ag \cdots O$ interactions lead to supramolecular chains that pack into layers, with connections between layers being of types $Ag \cdots Ag$ and $Ag \cdots O$.

Related literature

For related polymeric silver salts containing the 4-pyridinealdazine ligand, see: Kennedy *et al.* (2005); Broker & Tiekink (2007*c*); Shi *et al.* (2002); Patra & Goldberg (2003). For related literature, see: Broker & Tiekink (2007*a*,*b*).

 $\gamma = 83.30 \ (3)^{\circ}$

Z = 2

V = 797.4 (3) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.36 \times 0.21 \text{ mm}$

 $\mu = 1.45 \text{ mm}^{-1}$

T = 98 (2) K

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ag}(\mathrm{C}_{12}\mathrm{H}_{10}\mathrm{N}_4)](\mathrm{CF}_3\mathrm{SO}_3) \\ & M_r = 467.18 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 8.9608 \ (18) \ \mathring{\mathrm{A}} \\ & b = 8.9816 \ (18) \ \mathring{\mathrm{A}} \\ & c = 10.804 \ (2) \ \mathring{\mathrm{A}} \\ & \alpha = 75.99 \ (3)^\circ \\ & \beta = 71.09 \ (3)^\circ \end{split}$$

Data collection

Rigaku AFC12 κ /SATURN724 diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.845, T_{max} = 1.000$ (expected range = 0.623–0.738) 7718 measured reflections 2695 independent reflections 2654 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 226 parameters

 $wR(F^2) = 0.068$ H-atom parame

 S = 1.07 $\Delta \rho_{max} = 0.47$ e

 2695 reflections
 $\Delta \rho_{min} = -0.55$

H-atom parameters constrained $\Delta \rho_{max} = 0.47$ e Å⁻³ $\Delta \rho_{min} = -0.55$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Ag-N1	2.144 (2)	Ag-N4 ⁱ	2.150 (2)
N1-Ag-N4 ⁱ	172.36 (8)		
Symmetry code: (i) x -	+1. v - 1. z - 1.		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2 - H2 \cdots O1$ $C10 - H10 \cdots O3^{ii}$ $C11 - H11 \cdots O2^{iii}$	0.95 0.95 0.95	2.47 2.49 2.54	3.360 (4) 3.274 (3) 3.235 (4)	155 139 130

Symmetry codes: (ii) -x, -y + 2, -z + 2; (iii) x - 1, y + 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2524).

References

- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.
- Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m2368.
- Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m2420.
- Broker, G. A. & Tiekink, E. R. T. (2007c). Acta Cryst. E63, m2436.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kennedy, A. R., Brown, K. G., Graham, D., Kirkhouse, J. B., Kittner, M., Major, C., McHugh, C. J., Murdoch, P. & Smith, W. E. (2005). *New J. Chem.* 29, 826–832.
- Patra, G. K. & Goldberg, I. (2003). Cryst. Growth Des. 3, 321-329.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shi, Y.-J., Li, Y.-Z., Tong, W.-J., Chen, X.-T. & You, X.-Z. (2002). Acta Cryst. E58, m293–m295.

supplementary materials

Acta Cryst. (2007). E63, m2442 [doi:10.1107/S1600536807041888]

catena-Poly[[silver(I)-^µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] trifluoromethanesulfonate]

G. A. Broker and E. R. T. Tiekink

Comment

The polymeric title compound, $[Ag(C_{12}H_{10}N_4)]_n.n(CF_3SO_3)$, or $[Ag(4-PA)(CF_3SO_3)]_n$ (I), was investigated as a part of an on-going study of the structural chemistry of the Ag salts of isomeric n-pyridinealdazine molecules, n = 2, 3 and 4 (Broker & Tiekink, 2007*a*,b,c). The 4-pyridinealdazine (4-PA) ligand in (I) is bidentate bridging which results in the formation of polymeric chains and a near linear AgN₂ geometry for the silver atom (Fig. 1 & Table 1).

The linear chains are connected into supramolecular double chains (Fig. 2) *via* a combination of C—H…O interactions (Table 2) and a weak Ag…O3ⁱ (i = 1 - x, 1 - y, 1 - z) contact of 2.759 (3) Å. The chains stack side by side to form layers in the *ac* plane and these layers are connected to adjacent layers on either side *via* Ag…Agⁱⁱ (ii = 1 - x, 1 - y, -z) agentophilic interactions [3.2738 (13) Å] as well as Ag…O2ⁱⁱⁱ (iii = x, y, -1 + z) contacts of 2.854 (3) Å.

Similar polymeric structures to those in (I) are found in the following salts: perchlorate, tetrafluoroborate (as acetonitrile solvates, Kennedy *et al.*, 2005), hexafluoroantimonate (as the acetonitrile water solvate, Kennedy *et al.*, 2005), methanesulfonate (Broker & Tiekink, 2007*c*), and nitrate, for which two polymorphs have been reported (Shi *et al.*, 2002; Patra & Goldberg, 2003; Kennedy *et al.*, 2005). In all but the nitrate polymorphs, the chains are essentially flat. Only in (I) and the methanesulfonate salt (Broker & Tiekink, 2007*c*) are Ag^{...}Ag interactions found.

Experimental

Ag(CF₃SO₃) (Aldrich, 0.05 g, 0.19 mmol) was dissolved in CH₃CN (20 ml) and layered on top of a CH₂Cl₂ solution (20 ml) containing 0.04 g (0.19 mmol) of 4-pyridinealdazine (Aldrich). After three days, yellow blocks of (I) were observed at the interface between the two layers; m.p. 522–524 K.

Refinement

All the H atoms were included in the riding-model approximation, with C—H = 0.95 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of (I) showing displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms).

Fig. 2. View of the layers in (I) down the b axis highlighting the Ag…O interactions (orange dashed lines) leading to supramolecular double chains. Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).

Fig. 3. View of the stacking of layers in (I) highlighting the aregentophilic interactions (black dotted lines). Colour code as for Fig. 2.

catena-Poly[[silver(l)-µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] trifluoromethanesulfonate]

Crystal data

$[Ag(C_{12}H_{10}N_4)](CF_3SO_3)$	Z = 2
$M_r = 467.18$	$F_{000} = 460$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.946 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
a = 8.9608 (18) Å	Cell parameters from 1270 reflections
b = 8.9816 (18) Å	$\theta = 3.3 - 30.2^{\circ}$
c = 10.804 (2) Å	$\mu = 1.45 \text{ mm}^{-1}$
$\alpha = 75.99 \ (3)^{\circ}$	T = 98 (2) K
$\beta = 71.09 \ (3)^{\circ}$	Block, yellow
$\gamma = 83.30 \ (3)^{\circ}$	$0.45 \times 0.36 \times 0.21 \text{ mm}$
$V = 797.4 (3) \text{ Å}^3$	

Data collection

Rigaku AFC12ĸ/SATURN724 diffractometer	2695 independent reflections
Radiation source: fine-focus sealed tube	2654 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 98(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 10$
$T_{\min} = 0.845, T_{\max} = 1.000$	$k = -10 \rightarrow 10$
7718 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.068$	$w = 1/[\sigma^2(F_o^2) + (0.0382P)^2 + 0.6435P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
2695 reflections	$\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$
226 parameters	$\Delta \rho_{\text{min}} = -0.55 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ag	0.36832 (2)	0.36786 (2)	0.060832 (18)	0.02608 (10)
S1	0.26232 (8)	0.68538 (8)	0.79915 (7)	0.02863 (17)
F1	-0.0358 (2)	0.7776 (2)	0.8486 (2)	0.0571 (5)
F2	0.1221 (3)	0.9605 (2)	0.7756 (2)	0.0600 (6)
F3	0.0766 (3)	0.8337 (2)	0.9775 (2)	0.0568 (6)
01	0.2826 (3)	0.7020 (3)	0.6605 (2)	0.0583 (7)
O2	0.2017 (3)	0.5404 (2)	0.8843 (3)	0.0469 (6)
O3	0.3899 (3)	0.7370 (3)	0.8300 (2)	0.0436 (5)
N1	0.2426 (3)	0.4890 (2)	0.2149 (2)	0.0215 (4)
N2	-0.1451 (3)	0.8152 (2)	0.5065 (2)	0.0247 (5)
N3	-0.1980 (3)	0.8996 (3)	0.6078 (2)	0.0273 (5)
N4	-0.5349 (3)	1.2325 (2)	0.9117 (2)	0.0219 (4)
C1	0.3015 (3)	0.5068 (3)	0.3104 (3)	0.0234 (5)
H1	0.4007	0.4581	0.3132	0.028*
C2	0.2238 (3)	0.5927 (3)	0.4042 (3)	0.0223 (5)
H2	0.2690	0.6028	0.4700	0.027*
C3	0.0771 (3)	0.6650 (3)	0.4012 (2)	0.0215 (5)
C4	0.0148 (3)	0.6433 (3)	0.3041 (3)	0.0236 (5)
H4	-0.0855	0.6882	0.3005	0.028*
C5	0.1001 (3)	0.5563 (3)	0.2138 (3)	0.0251 (5)
Н5	0.0568	0.5430	0.1479	0.030*
C6	-0.0050 (3)	0.7582 (3)	0.4990 (3)	0.0231 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

Н6	0.0462	0.7768	0.5580	0.028*
C7	-0.3364 (3)	0.9599 (3)	0.6199 (3)	0.0277 (6)
H7	-0.3941	0.9449	0.5644	0.033*
C8	-0.4057 (3)	1.0528 (3)	0.7210 (3)	0.0237 (5)
C9	-0.3297 (3)	1.0618 (3)	0.8132 (3)	0.0225 (5)
Н9	-0.2320	1.0071	0.8118	0.027*
C10	-0.3976 (3)	1.1503 (3)	0.9058 (2)	0.0216 (5)
H10	-0.3455	1.1540	0.9689	0.026*
C11	-0.6086 (3)	1.2238 (3)	0.8233 (3)	0.0289 (6)
H11	-0.7058	1.2803	0.8266	0.035*
C12	-0.5486 (3)	1.1358 (3)	0.7276 (3)	0.0299 (6)
H12	-0.6042	1.1321	0.6671	0.036*
C13	0.0992 (3)	0.8217 (3)	0.8526 (3)	0.0298 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag	0.02502 (14)	0.02762 (14)	0.02719 (15)	0.00420 (9)	-0.00387 (9)	-0.01708 (9)
S1	0.0247 (3)	0.0372 (4)	0.0324 (4)	0.0105 (3)	-0.0154 (3)	-0.0196 (3)
F1	0.0286 (10)	0.0531 (12)	0.0942 (16)	0.0092 (8)	-0.0254 (10)	-0.0210 (11)
F2	0.0581 (13)	0.0333 (10)	0.0737 (14)	0.0066 (9)	-0.0168 (11)	0.0070 (9)
F3	0.0611 (14)	0.0662 (13)	0.0445 (11)	0.0323 (11)	-0.0170 (10)	-0.0297 (10)
01	0.0528 (15)	0.094 (2)	0.0380 (13)	0.0212 (14)	-0.0215 (11)	-0.0332 (13)
O2	0.0479 (14)	0.0324 (11)	0.0642 (15)	0.0117 (10)	-0.0236 (12)	-0.0152 (10)
03	0.0281 (11)	0.0606 (14)	0.0547 (14)	0.0096 (10)	-0.0201 (10)	-0.0310 (11)
N1	0.0208 (11)	0.0224 (10)	0.0211 (11)	0.0022 (8)	-0.0043 (8)	-0.0087 (8)
N2	0.0292 (12)	0.0236 (11)	0.0215 (11)	0.0036 (9)	-0.0039 (9)	-0.0126 (9)
N3	0.0296 (13)	0.0289 (11)	0.0254 (12)	0.0069 (9)	-0.0061 (9)	-0.0166 (9)
N4	0.0208 (11)	0.0218 (10)	0.0234 (11)	0.0020 (8)	-0.0044 (9)	-0.0098 (8)
C1	0.0213 (13)	0.0236 (12)	0.0236 (13)	0.0038 (10)	-0.0054 (10)	-0.0062 (10)
C2	0.0233 (13)	0.0233 (12)	0.0200 (13)	0.0002 (10)	-0.0065 (10)	-0.0048 (10)
C3	0.0239 (13)	0.0198 (12)	0.0187 (12)	-0.0001 (10)	-0.0021 (10)	-0.0067 (10)
C4	0.0177 (12)	0.0290 (13)	0.0244 (13)	0.0051 (10)	-0.0060 (10)	-0.0098 (10)
C5	0.0252 (13)	0.0286 (13)	0.0226 (13)	0.0023 (10)	-0.0077 (11)	-0.0086 (10)
C6	0.0246 (13)	0.0232 (12)	0.0225 (13)	0.0001 (10)	-0.0054 (10)	-0.0099 (10)
C7	0.0281 (15)	0.0302 (13)	0.0287 (14)	0.0063 (11)	-0.0105 (11)	-0.0147 (11)
C8	0.0235 (13)	0.0217 (12)	0.0272 (14)	0.0039 (10)	-0.0063 (11)	-0.0124 (10)
C9	0.0223 (13)	0.0227 (12)	0.0230 (13)	0.0037 (10)	-0.0069 (10)	-0.0080 (10)
C10	0.0213 (12)	0.0232 (12)	0.0213 (12)	0.0016 (10)	-0.0062 (10)	-0.0084 (10)
C11	0.0207 (13)	0.0335 (14)	0.0383 (16)	0.0088 (11)	-0.0110 (12)	-0.0206 (12)
C12	0.0267 (14)	0.0375 (15)	0.0364 (15)	0.0097 (12)	-0.0166 (12)	-0.0240 (12)
C13	0.0247 (14)	0.0297 (14)	0.0369 (16)	0.0058 (11)	-0.0138 (12)	-0.0077 (11)

Geometric parameters (Å, °)

Ag—N1	2.144 (2)	C1—H1	0.9500
Ag—N4 ⁱ	2.150 (2)	C2—C3	1.403 (4)
Ag—Ag ⁱⁱ	3.2738 (13)	С2—Н2	0.9500

S1—O1	1.422 (2)	C3—C4	1.397 (4)
S1—O3	1.442 (2)	C3—C6	1.463 (3)
S1—O2	1.449 (3)	C4—C5	1.376 (4)
S1—C13	1.830 (3)	C4—H4	0.9500
F1—C13	1.333 (3)	С5—Н5	0.9500
F2—C13	1.317 (3)	С6—Н6	0.9500
F3—C13	1.328 (3)	С7—С8	1.469 (4)
N1—C5	1.350 (3)	С7—Н7	0.9500
N1—C1	1.351 (3)	C8—C12	1.395 (4)
N2—C6	1.284 (4)	C8—C9	1.397 (4)
N2—N3	1.407 (3)	C9—C10	1.372 (4)
N3—C7	1.273 (4)	С9—Н9	0.9500
N4—C11	1.346 (3)	C10—H10	0.9500
N4—C10	1.350 (3)	C11—C12	1.385 (4)
N4—Ag ⁱⁱⁱ	2.150 (2)	C11—H11	0.9500
C1—C2	1.379 (4)	C12—H12	0.9500
N1—Ag—N4 ⁱ	172.36 (8)	N1—C5—H5	118.6
N1—Ag—Ag ⁱⁱ	89.29 (6)	С4—С5—Н5	118.6
N4 ⁱ —Ag—Ag ⁱⁱ	97.80 (6)	N2—C6—C3	121.0 (2)
O1—S1—O3	115.54 (16)	N2—C6—H6	119.5
O1—S1—O2	115.44 (17)	С3—С6—Н6	119.5
O3—S1—O2	113.75 (15)	N3—C7—C8	119.1 (2)
O1—S1—C13	103.95 (14)	N3—C7—H7	120.4
O3—S1—C13	103.31 (13)	С8—С7—Н7	120.4
O2—S1—C13	102.47 (14)	C12—C8—C9	117.9 (2)
C5—N1—C1	118.0 (2)	C12—C8—C7	121.2 (2)
C5—N1—Ag	118.75 (17)	C9—C8—C7	121.0 (2)
C1—N1—Ag	123.24 (17)	С10—С9—С8	119.4 (2)
C6—N2—N3	110.3 (2)	С10—С9—Н9	120.3
C7—N3—N2	113.4 (2)	С8—С9—Н9	120.3
C11—N4—C10	117.7 (2)	N4—C10—C9	123.1 (2)
C11—N4—Ag ⁱⁱⁱ	122.05 (17)	N4—C10—H10	118.4
C10—N4—Ag ⁱⁱⁱ	120.26 (17)	С9—С10—Н10	118.4
N1—C1—C2	122.8 (2)	N4-C11-C12	122.7 (2)
N1—C1—H1	118.6	N4-C11-H11	118.6
C2—C1—H1	118.6	C12-C11-H11	118.6
C1—C2—C3	119.1 (2)	C11—C12—C8	119.3 (2)
C1—C2—H2	120.5	C11-C12-H12	120.4
C3—C2—H2	120.5	C8—C12—H12	120.4
C4—C3—C2	118.0 (2)	F2—C13—F3	107.5 (2)
C4—C3—C6	122.6 (2)	F2	106.6 (2)
C2—C3—C6	119.4 (2)	F3—C13—F1	107.1 (3)
C5—C4—C3	119.4 (2)	F2—C13—S1	112.5 (2)
C5—C4—H4	120.3	F3—C13—S1	111.70 (18)
C3—C4—H4	120.3	F1—C13—S1	111.1 (2)
N1C5C4	122.8 (2)		
Ag ⁱⁱ —Ag—N1—C5	111.84 (19)	C12-C8-C9-C10	0.2 (4)

supplementary materials

Ag ⁱⁱ —Ag—N1—C1	-65.45 (19)	C7—C8—C9—C10	179.7 (2)
C6—N2—N3—C7	179.7 (2)	C11—N4—C10—C9	1.2 (4)
C5—N1—C1—C2	-1.3 (4)	Ag ⁱⁱⁱ —N4—C10—C9	179.98 (19)
Ag—N1—C1—C2	176.01 (19)	C8—C9—C10—N4	-1.0 (4)
N1—C1—C2—C3	0.1 (4)	C10-N4-C11-C12	-0.5 (4)
C1—C2—C3—C4	1.4 (4)	Ag ⁱⁱⁱ —N4—C11—C12	-179.3 (2)
C1—C2—C3—C6	-179.1 (2)	N4—C11—C12—C8	-0.3 (4)
C2—C3—C4—C5	-1.7 (4)	C9—C8—C12—C11	0.5 (4)
C6—C3—C4—C5	178.9 (2)	C7—C8—C12—C11	-179.1 (3)
C1—N1—C5—C4	1.0 (4)	O1—S1—C13—F2	-51.7 (3)
Ag—N1—C5—C4	-176.4 (2)	O3—S1—C13—F2	69.4 (2)
C3—C4—C5—N1	0.4 (4)	O2—S1—C13—F2	-172.2 (2)
N3—N2—C6—C3	180.0 (2)	O1—S1—C13—F3	-172.7 (2)
C4—C3—C6—N2	5.4 (4)	O3—S1—C13—F3	-51.7 (2)
C2—C3—C6—N2	-174.0 (2)	O2—S1—C13—F3	66.7 (2)
N2—N3—C7—C8	-179.3 (2)	O1-S1-C13-F1	67.8 (2)
N3—C7—C8—C12	172.3 (3)	O3—S1—C13—F1	-171.2 (2)
N3—C7—C8—C9	-7.2 (4)	O2—S1—C13—F1	-52.7 (2)
0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1		.1 .1	

Symmetry codes: (i) *x*+1, *y*-1, *z*-1; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*+1, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!\!A$
С2—Н2…О1	0.95	2.47	3.360 (4)	155
C10—H10···O3 ^{iv}	0.95	2.49	3.274 (3)	139
C11—H11…O2 ^v	0.95	2.54	3.235 (4)	130
~				

Symmetry codes: (iv) -*x*, -*y*+2, -*z*+2; (v) *x*-1, *y*+1, *z*.

Fig. 1

Fig. 3